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ABSTRACT

Let S : P  be the space of bivariate piecewise polynomial functions
k,A

in CP O of degree 4 k, on the mesh A obtained from a uniform square mesh

by drawing in the same diagonal in each square.

de Boor and H8llig have given the following upper bound

m 4 m(k) :- min{2(k-p), k+1

for the approximation order m of S.

In this paper, the lower bound

m ) m(k) - 2

is demonstrated. This result is close to de Boor and H8llig's conjecture

that m never differs from m(k) by more than 1.

Incidentally, the approximation order of w4 A is shown to be 4.
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SIGNIFICANCE AND EXPLANATION

Univariate splines have been proved quite useful in practice. However,

* if one wants to fit a surface, or solve a partial differential equation

numserically, one iwould naturally think of using multivariate splines. Here

splines still mean piecewise polynomial functions. In this respect, a basic

question is to ascertain, for a given mesh ~and a family S of splines on

Kwhat its optimal approximation order is. This question is challenging

even for a regular triangular mesh- A, )as soon as one demands that the

approximating functions have a certain amount of smoothness. The report

records a step toward answering the above question.-
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APPROXIMATION BY SMOOTH BIVARIATE SPLINES
ON A THREE-DIRECTION MESH

Rong-qing Jia

1. Introduction

In this paper we study approximation order of smooth bivariate splines on

a three-direction mesh. The work in this respect was initiated by de Boor and

DeVore [BD] and de Boor and H8llig [BH 1,2,3]. Here we follow them and

* introduce some notations. Let

A : U {x e R2 x(1) = n, x(2) = n, or x(2)-x(1) = n)
neZ

Namely, the mesh A is obtained from a uniform square mesh by drawing in the

same diagonal in each square. Let

S :- Wp n Cp

k, A k,A

be the space of bivariate pp (piecewise polynomial) functions in CP, of

total degree 4 k, on the mesh A. Also, by wk we denote the space of

polynomials of total degree 4 k. We are interested in the approximation

order of S. The approximation order of S is, by definition, the integer

m for which the following holdsj: For all sufficiently smooth function f,

dist(f,Sh) O O(hm)

while, for some C -function f,

dist(f,Sh )  o(hm ) .

Here, the scale (Sh ) of approximating spaces is generated from S by simple

scaling,

Sh  :m Oh(S)

with
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(0hf)(x) := f(x/h), all f, x, h

de Boor and DeVore have given the following lower bound for m (see

[SD]):

m ) p+2 in case p 4 p(k) := L(2k-2)/3 •

In contrast, S has approximation order 0 for p > p(k).

An upper bound for m has been obtained by de Boor and H8llig (see [B11

3; Theorem 3]:

m 4 m(k) := min{2(k-p), k+ll

de Boor and H81lig also show that the approximation order of W3 is 3

rather than 4 (see (BH 2]). Thus the approximation order of S may differ

from m(k) by 1. Based on those investigations, de Boor and H8llig raised

the following

Conjecture ([BH 3]). The approximation order of S = w never differs

from its upper bound m(k) by more than 1.

In this paper, we shall show that the approximation order of S: k,8L

never differs from m(k) by more than 2. The proof of this result will be

based on a quasi-interpolant scheme. For the record we state the following

Theorem 1. Suppose that B e s with supp B finite. If the map

'% T : p plj)B( -j)

zez
2

is one-to-one and onto vrn, then
[n+1

dist(f,Sh) = O(hn + 1)

for all sufficiently smooth functions f.

The argument in (BH 1; Section 6] essentially gives the proof for Theorem

1. We do not need to repeat the proof here.

To construct an element B e s with the property required by Theorem I,

we shall emply box splines, which were introduced by (BD] and [BH 1]. In

section 2, we develop some preliminary results from univariate B-spline

. -2-



theory. In section 3, we elaborate some properties of box splines on the

three-direction mesh Ai. in section 4, we construct an element B e s with

the property required by Theorem 1, and therefore prove our main results. In

section 5, we show that the approximation order of w is 4. This

illustrates that the approximation order of WP might be exactly k when

k -2P+2.

2. Some preliminary results from univariate D-sp~line theory.

Let t -(t ) be a knot sequence. Recall that

k-i
Mik(x) :- k(tiIe...Iti ](-x)+

Is a normalized 3-spline of order k for each i e S. Also we write

Nik~x : ti+k - t)ik~x

If p is a polynomial of degree < k, then

P Xi (Ap)N i,kq
iez

where Ais the linear functional defined by

A f *- k 1kli(kli-)(i)(
Xi,k f~ *i,k f Ti

with

*(x) :- (t +-x ) age (t i--x )/(k-1)1

an i e (tiuti (se [BF]; also [BI). Now suppose t i, all i e z.

Then N M ani,k i,kan

#~I,k~x W (i+1-x) *o*(i+k-1-x)/(k-1)1

Iit is easily seen that there exist unique constants a (-,..k2
I, k- 1

such that
k-2

-1 -a (1+1-x) * (I+k-2-x)/(k-2)1 1
O;k~x LAk-1

Comparing the coefficient of xk-2  on both sides of (1), we obtain

k-2
Sa2 -= (2)



If f is a polynomial of degree (k-2, then

p : M~)N ik-
je.

is also a polynomial of degree 4 k-2. on the one hand,

On the other hand,

= ~ i,) i,kiez

Pick Te (i+k-2,i+k-1) and calculate X i~kp as follows:

- jP k*i,k (Ti ) (T i

~k1i( (k-2-J) (T ))T
- i!,k)

Jk-1 - I

k-k-2

k-2-
(~ikPNik -2 (k2-J) (J)zkipN~

~~~ (.1Nj~ )p ( ez

k-2 Ik-2

~~ a~ k-i -f i+N,k =-fI)ik*Z

iez 0 ies 1- aielie

We have proved

Lemma 1. For any polynomial of degree 4 k-2

k-2

f~i) i~- f(i)( I a 1k1N ik(.+I))
iez f)Nk 1  iez 1=0Lki ~

-4-



3. Box splines on a three-direction mesh.

As defined In [BH 1], the box spline M_ is the distribution on le

qiven by the rule:i. n
-'. M= : *. J ] (= (~id

"-" [0,1] n  i-I

for some sequence E :m (4 n in 1P. In our case, m - 2. Let e i be the

unit vector along xi-axis (1-1,2), and

d, :. e, d2 :a e+e2, d3 ;o e 2

. r+s+t b h eunei
For positive integers r, a and t, let S - (y 1  be the sequence in

R2 given by

E., =6092 Cr ad 1 " Ir+l . r+s m d 2  and Cr+s+l "'''' tr+s+t " d 3

From now we will write M-,s,t instead of M_. Caution! Our notation is

slightly different from [BK 3]. In (BH 3], d2 - e2 and d3 - e1+e 2 * Thus

our Mres,t in Just Mr,t,e in the sense given by IS% 3).

The smoothness of MrIS't depends on the direction multiplicities.

From (BHl 31 we have

M e L(d) c C d
1)

rfs,t

with d - min(r+ss+tt+r} - 1.

dv Now we define

0 r-2 0 s-2 0 t-2
B rls,t(X Vx2 ) :. I .. I I .

X1100 xr 0 PIANO us-Iwo Vl210 V t-2 0

(a Ai .A .*.M P sIavl' ---a t 1x

(3)

M. rst(XlI+A I+ . . .+ Ar . + P l1+ 0. .+ 11s8-1 x 2 + 111+ .. .+ s l+ V I+ ,. .,+ 't -1 )

for (rs,t) with min(r,s,t} ; I

where a has the meaning determined by (1).

,-5



The reason for introducing Br,s,t will be clear after we prove the

following

Lemma 2. For any bivariate polynomial of degree 4 r+s+t-2, we have

10 Dr (D +D2 p(j)(Brst - B )(.-j)l - 01 2 j. 2r;~ r,s,t-1
;:'.)jez 2

20 DID 2 [ E p(j)(B - B )(*-j)] = 0 g
12j 2 r's't re-lt

3 0 (D +D D~ t p(j)(B 't- B )( - 0
1 2 2z2 r,s, r-1,s~t

2 2

Here, as usual, J - (JlJ 2 ) e z2, x = (xlx 2 1 e R2 , Di - I

V f - f-f(*-e i) i- 1,2).

0 i
Proof. By symmetry, 20 and 30 follow from 10. Thus we only need to

prove 10.  Suppose

B = b) .(€+i)
Brs,t-1 2 b r,s,t-i

iez
Then, by the definition of Br,s,t , we have

t-2
Br'st 2 btI-0 a rs't-IMrS't('++e 2

iez
Hence

Dr "DD 2 : p(j)(B -B
(0 jez2  ~~

t-2
+V1  M I a M (-0,+I+t1 (

1i. 2 1. 2-0
jes

For any test function *, one can easily check that

<M0,0t,*> - f Mt(x2 )*(Ox 2 )dx2

Thus

2 °°

-6-
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t-2

- ' (V1(V +v )p)(j) a t--oo J~si+Jte 1
163 1 t-o I00t2 ''-

t-2
I (vt(Y 1+v 2Jp)Jl I a I8  - t 4 dx i i +1. -Lt-1 (x 2-12 1 1#9I,x2 )dx 2 0

2 1in 2' 1- 2
jez2

by Lemma 1, since V( ,)phas degree 4 t-2. This. completes the proof
112

of Lema 2.

4. Quasi-interpolant scheme.

in the following, r, a and t are always integers. Let

I a- (r,s,t) I r+a+t - 2p+4 and 2 4 r,s,t 4 p4.11

JI ((r,s,t) Ir+s+t - 2p+3 and 2 4 r,s,t 4 p4.1)

{ (r,a,t) Ir+s+t - 2p+3 and 2 4 r,e,t 4 p)

K a- (r,s,t) I r+a+t - 2p+2 and 2 4 r,s,t 4 p)

We have

I -((r,2,t) Ir+2+t-2p+4,24r,t~p+1) u ((r,s,t) Ir+s~t-2p+4,3Cs~p41,2Cr,t~p41)

-((p+1,2,p~l)) u, ((r,s,t)lr~s~t-2pe4,3Ca4p41,2Cr,tp) u

((r,st) 1r~s~t-2p44,3cs94p+1,2Cr,t and auax(r,t)-p+11

f(p+1,2,p+1)l u f(r,s,t)Ir+s+t-2p+4,4Cs~p+1,2Cr,t~p) u

{(r,a,t)lr+s+t-2p+4,3Ca~p+1,2Cr,t and max~r,t)-p+t) .(4)

Similarly,

J, ((r,s,t)Ir+a+tn2p+3, 34s~p+1 and 24r,t~p) u

(5)
{(r,a,t)Irla+tn2p+3, 24s4p, 24r,t and max{r,t} p4.1)

and

* J -((r,s,t)lrs.t - 2p+3, 3 4 a 4 p and 2 4 r,t 4 p) .(6)
2

Therefore

III ;j21 - IJ1I + lIK - 1 .(7)

Here, by IZI we mean the cardinality of the set E.

-7-



In the following we use the convention that the empty sum has value 0.

Now we construct B as follows:

BB t B
S(r,s,tlel r,s,t (r,s,tleJ1Ir~~

(8)
- Brs t + B

(r,s,t)eJ (rst+ ,t B r,s,t
(s, 2 (r,s t)eC

Lemma 3. B( -j) = 1.

- jez 2

Proof. From [BH 1] we have

SM rs,t -j) = 1

jez2

* rThen (2) and (3) yield

I Bt( -j) = I

jez
2

Therefore

B( -J) = III - IJ 1 1 - I721 + IKI 1

jei

The following lemma plays an essential role in this paper.

Lemma 4. For k = 2p+2, Be i P  and
kA -

p- p(J)B( -j) is a polynomial of degree < deg p

jez2

for any polynomial of degree 4 k-1.

Proof. We first show that

1 2 q I p(j)B( -j)] Is a constant for any (qlq 2) e z2

jez 2  (9)

with q) O, q2 > 0 and q 1+q2 =deg p k-1

-8-



. Fix q, and q2. Consider the following index sets:

E ((r,s,t) r > q and t > q2}

E2 := {(r,s,t) r 4 q and t 4 q 2 }

E: {(r,s,t) r 4 q and t > q2
}

E: {(r,s,t) r > q and t 4 q2}

Then {Ei i - 1,2,3,4) forms a partition of Z . 7b prove (10) it is
i Z+

sufficient to show that

q1 q2D I D2  p(j)C B rs~ B
1 2 :2 (r,s,t)eInE rst (r,s,t)eJlnEi r,s,t

jez Ii

- B * Br t

(r,s,tleJ 2 nEi i(r,s,tlexnEl

is a constant for each i - 1,2,3 or 4. Thus we have to split our

consideration into the four cases: i - 1,2,3 or 4.

Case i 1. Then r > q1, and t > q2  We have

ql q 2  q1 q2D1 D2  p(J)M ('-J) = q (-j)
D )2r,s,t V ( 1 V2 p)(J)Mr-q 1'st-Q 2

q1 q2
which is a constant, since V1 V2 p is a constant. It follows that

q 22

DI D2  1 p(J)B r,s,t(-J) is a constant for any (r,s,t)

with r > qI and t > q2

Hence

q1 q2

01 D2 (j) B - r .
jez2 (r,s,t)elnE r,s,t (r,s,t)eJ1nE1

(r,s,t)eJ EB r,s,t E r,s,t )(.-J)
(stej2 nE1 (r,s,t)eKn 1is a constant.

-9-



Case i -2. in this case, r 4 a and t 4 q .Note that1 2

*This is true, because r < and t 4 q2 imply that

r+t 4 q q 2p+l

*Now (4), (5) and (6) tell us that

B -Br~~ B +
r s't f t st(r,s,t)elnE (r,s,t)8J nE (r,s,t)ej nE

2 1 2 2 2

p+1
*B rst(EB'' -B sI'

2 r+t=2p+4-s

p+1 p41(10)
(B r~'-B r-lt - (B r ~-B rs-i 0

s=3 24r,t r8= rs 3 24r,t~p rstr
max{r, t}=p+l r+t=2 P3-s
r+t=2p+4-a r~q1 ,tCq2

qq 2

q ~ - q2 t-
D 1  D2 DDD~ 2~)B rps- ,t 0''- ~

2.jeez

* by Lenmma 2. Therefore

DI DBB
2 p(j)( r~s't rX'

2 (r,s,t)eInE2 (~~~jn

Br,s,t+B so0
(r,s,t)eJ nE (r,s,t)eKnErst

2 2 2

Case 1 3. Then r 4 and t > q. We have

1

-10-



rq- ql-r q21: l 2 r 1 - q2 r 1: ) 2

D D D D D D(D+D2-D1 2 1 1 2 1 1 22 2

r qr q 1-r-1 q -r q2

'D[ (-1) (D I+D2 ) D2  it )ID2

- q- q-r q +q
ID [ (-I) - ( I it )or(D +D2 ) 12]

S1-01 2 2

q1+q2-r-t s- q 1-r

,D;[( r + + ) (11)
1£=0 Xffiql+q 2 -r-t+1 Xfs

qr - £ ql1+q 2- r - t]

(() I DI+D2  D2

D (D+D H + t +
1 1 2 r,s 1 2r,t

s-1 q -r-At q -r q q+q -r-17!.. r 1- 2lq -r J

D(-) - (l )(DI +D2) D2
Atq1 +q2-r-t+ 1

. where the differential operators H and G are defined as follows:

rs r,t

ql-r ql-r- q 1-r q +q -r-t

H = I (-1) i A)(DI+D2) D2

q1 +q2-r-t q-r-A q-r q +q-r-t-1

G rt . +D 2  D2

For the third term in (11) we observe that

::~ (DI+D2) - 1 q " - D P(Jm ".-Jll

1 z2 2 r,s,tjez2

. .ql~q+q2 - -

S (,r (V +V 1 q 2 r£ M-j1 1 2 2 (MO,st,t(ql+q2_r.-£)(-
i- jesz

is a constant for x e q1+q2-r-t+l,s-11, because

s-1 > 0 and t- (q1+q2-r-1) > 0

bi -11-
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Thus we can omit the third term of (11) in the following discussion. Now we

want to prove that

I p(j)( - - + (D +D + G D D B (j)
-e 2 nE 3 f1E 3 2E 3 E 3 rs 1 1 2 r,t 1 2 r,s,ti. jez2 IE3 1 3 J2E3 KE3

is a constant. Let

U I p(j)( +- - I + )(H Dr(DI+D 2 )
3B

jez2  InE3 J11lE3 J2 lE3 KnE 3  rs 1 rst

V: X p(j)(X - - + )(G DrDt)B (-j))
jez2 InE 3 JnE J2nE3 KnE 3  rt12 rst

Then we can argue separately for U and V. Interchange s and t in (4),

(5) and (6). We can write down (cf. (10))
:_p4.1 p+I.1

U p(j)H D +1(D +D) +1B (--j)
2 p+1,p+1 1 1 2 p+1,p+1,2

jez
+ p(J) H D r (D +D2(B - B )(.-J)

je, t=4 34r,s~p rs 1 1 2 r's't r's't-1

r+s=2p+4-t

r~qlt>q2
* p+1 (12)

+ Z p(j) H r sD1(D +D25(B - B )( -j)

jeZ2 t=3 2(r,s r,s,t-1
max{r,s}=p+l
r+s=2p+4-t
r~qlt>q2L'-°22

P+.1
+ p(j) j j Hr D (D +D s (B B

2 t=3 2Cr,s~p (B 1 2 r's't r'st-1
jeZ "r+s=2p+3-t

r4ql, t>q2

However, H = 0, because q1 4 2p+1 < (p+1) + (p+1). For the second
o hp+Ip+1

,.. term of the above expression, we have

' -12-



p+1

p(j) H D (D +D)(B -B-j
2 -4 3(~sp r,s 1 1 2 r,s,t r,s,t-1, jeZ2 t-4 34r, s4p

'"e- r+s-2p+4-t
roq, ,t>q2

H r -r ) ( .-() B 0
SL . H D (D +D 2)r,s,t r,s,t-1
t-4 34r,sep 1)2

r+s-2p+4-t 
je.

rfqlt>q2

o* by Lemma 2. The third and fourth terms of (12) are also zero by the same

argument. Thus U 0. Similarly we can show V - 0. Therefore

ql q2
DD{ pCj)[( - - +( ]

1 2 2 In E JlnE JnE3 KnE r
jez 3 13 23 3

is a constant.

Case i - 4. In this case r > q, and t 4 q2, and the argument is as

in Case 3.

So far we have proved statement (9). Now

p - I p(J)B(s-J)

jez
2

is a polynomial of degree 4 deg p. For (ql,q 2) with q 1 0, q2 0 and

q1+q 2 deg p we have

q q2  q q2  12  1 2V1 V2 (p . plJ)BI'-j)) - 1 2 1J2-i)

qlq 2  q q21 V2  p - (V1 V2 p)(J)B(.-J)

However, V1 V2 p Is a constant. Hence

q q2  q q2
( V2 p)(J)B(°-J) V1 V2 

p

*by Lemma 3. Therefore

-13-

.: - : . .- .. -. .. . . .: . :.. :-.. . ....



. . . . .. . .

ql q2

V1  2 (p - X p(j)B(*-j)) 0, for any (ql1 q2 ) with q )P0,q2 0 and ql+q deg p

jez
2

This shows that p - p(J)B(s-j) is a polynomial of degree < deg p. Thus

jez2

Lemma 4 is proved.

Now we can prove

Theorem 2. The mappin T defined !M

T : pb- I p(j)B(--j) , p e vk- 1

jez2

is one-to-one and onto 1 k. 1

Proof. wk-1  is a linear space of finite dimension, and T is a linear

mapping from wk-I to 'k-i by Lemma 4. If p # 0, then deg p ) 0. Lemma

4 tells us that p(J)B(*-J) has the same degree as p; that is

2 p(j)B(*-J) ' 0. This shows that T is one-to-one. Since wk-i is

jez2

finite-dimensional, T is also onto. The proof of Theorem 2 is complete.

Now combining Theorem I and Theorem 2 gives

Theorem 3. If k - 2p+2 and S - WP  then
kA'

dist(f,Sh) - O(hk)

for any sufficiently smooth function f.

Remark. From the above arguments we see that Theorem 3 remains true for

k > 2p+2.

We show in Section 5 that the approximation order of i4, is 4. Thus,
4,fi

In general, Theorem 3 cannot be improved.

For the general case, we also have

Theorem 4. If S -W and p 4 p(k) : L(2k-2)/3J, then.. .. k,A -

dist(f,Sh) - O(hm(k)- 2 )

for any sufficiently smooth function f.

-14-
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. .

Proof. From [BH 11 we already know

dist(f,Sh O(h 
+ 2

If 2k 4 3p+4, then

mtk) - 2 4 2(k-p) - 2 = 2k - 2p-2 4 p+2

Hence Theorem 4 holds for 2k 4 3p+4. If k ; 2p+2, then

m(k) - 2 4 k-1

Thus Theorem 4 follows from Theorem 3. Now assume 2k ) 3p+5 and k < 2P+2.

Let

a :- 2p+2-k, k' :- k-3o, p' :- p-2o

" Then

p' - p-2a - p-2(2p+2-k) - 2k-3p-4 ) 1

and

k' - k-3a - 4k-6p-6 - 2(2k-3p-4) + 2 - 2p'+2

Let

I' = ((r,s,t)Ir+s+t - 2p'+4 and 2 4 r,s,t 4 p'+1)

J; ((r,s,t)Ir+s+t = 2p'+3 and 2 4 r,s,t 4 p'+1}

.J; ((r,s,t)lr+s+t = 2p'+3 and 2 C r,s,t 4 p'}

K' a ((r,s,t)r+s+t = 2p'+2 and 2 4 rs,t 4 p')

Define

S -B -+r+o,s+o,t+o
(r,s,t)eI' (r,s,t)ej (r,s,t)eJ' (r,s,t)e'

1 2
.1

Then B e xk * An argument similar to that used for Lemma 4 shows that

p - I P(j)B(.-J)

Je2
• . je,2

is a polynomial of degree < deg p for any polynomial p with

deg p 4 kl-1+20. However,

k'-1+20 - k-30-1 + 20 k-O-1 = 2k-2p-3

Thus the mapping

-15-



p- X p(J)(.-J)

jez2

is one-to-one and onto 1 2k_2p_3* Now Theorem I gives the required result:

. For any sufficiently smooth function f,

dist(f,Sh) - Olh 2k202

This ends the proof of Theorem 4.

5. Approximation order from bivariate CI-uartics

In this section we will show that for S I and

2 3 2
f .- Xl, x - (x1 , x 2 1 eR

there exists a positive constant such that

4dist(f,S ) > const 'h
h

To this end we shall follow [BH 2] and discuss B-nets in the following.

Given a triangle T with vertices U, V and W, we associate each

point x with its barycentric coordinates, i.e. with (u,v,w) for which

x - uU + W +wW, and u+v+w - 1

Any polynomial p of degree C n can be represented by

p M I bi jk*ijk
i+j+k-n

with

* (x) - - I iiwk
ujk lIljki

where bijk are uniquely determined by p. This representation gives rise to

a function

b : x jk -b jk, X jk :- (iU+JV+kW)/n and i+j+k - n

This function is called the B(ernstein or ezier)-net for p (with respect to

r). (See (BH 21.)

To a given function f e w 0 we associate a function bf so that bf

is defined on

4J 4 :- (I/4)2

-16-
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and bf agrees with the B-net for f on each triangle cf A. Obviously,

bf is well defined. We also call bf the B-net for f with respect to A.

0
Let us now introduce some linear functionals on w 4 A" Define

A(mun)f : bf( , + b 1i - b 1 - i
f bf(m+ -,n)+ b (m+ 1n bf(m+ !---1n- b b(M+ ~n+4

(mn)f : b (m,n+ i) + b (mn+ i) 1 ( !,n+ -- - b 1(m+ I,n+ i)
i2 fmln 4  f f4 4b 4j~+ bf(3 4l~(m:n -1t2

* i f b (m+ -,n+L-) + bf (m+ 1,n+ -) - bf(m+ --- n+ ) -

-N-i + i

br(m+ i = 1,2,3,4 1 m,n e z
f 4+ 4n )

-'" Let
-" Tllm,n)

."AiJ := "-u 1 I m,n e Z) , i = 1,2,3,4; j = 1,2,3

adii 
ii

i and

4 3, " A :- U U A j "
i- i-ism t=11

If f e W4, then Abf = 0 for any A e A (see [F] and [BH 2]).
4,f

We extend each A e A to the continuous linear functional XI on C(R2)

with the aid of the local linear map I which associates f with the unique
0

element If of w4, which agrees with f on J4 " Let T be the mapping

fi-+ bif for f e ClR 2 ), and let T be the shift operator f i-- f(*+j).

We have the following

Lemma 5. T is a linear mapping and commutes with any shift Tj, i e z 2 .

Proof. It is obvious that T is a linear mapping. To prove the second

statement we first show that I commutes with any T. Indeed,

Tj(If)(i) - If(i+J) = f(i+J) for any i e J4  ,

SI(Tf)(1) = I(f(*+j))(i) = f(j+i) for any i e J4

This shows that T I = IT Next, , have to show that the mapping
i~~ ~~ J, -- ,

0
g b g e4,A

comutes with any T Let T he a triangle of. A. Then

-17-



.4l - - ' -v .'--.

.%%

Sp++r4 pqr # pqr

It follows that

g(*+J)IT~ b X q # *q
Tj p+q+rpqpr

Hence the mapping g 6-. b commutes with any shift. The Leiia is proved.
g

Corollary. if f e T5  and X e A, then Xbf is invariant under

translates.

Proof. By Lemma 5

A(blf(9+ j ) -blf) - A(TTj - If) - A(T(T f - f))

However, Tjf - f e W4; hence A(T(T f - f)) - 0. This shows that

lb (.+J) Xb for any j e z 2

if if

*The Corollary is proved.

Now let

11 a2 1 a3 1  a4 1  F1 1 -1 1

* 1a12 a22  a32  a42  0 1 -1 1

Sa 13  a 23  a L3a, 0 -1 1 0oJ
and

N-1 N-1 4 3 a (mn) with h > 0 and N (13)
m-0 n-0 i- J-1 'I/h L/hi

Since Sh _ ker yh' we have

dist(f,Sh) ) dist(f, ker ph)  h IhfI/lhl 1 (14)

By the above Corollary

23 5

For f : x -0 X 2 x we have a/f - h f. Hence
1 2 1/hf

4 3

Phf hSN2 x (0,)_i f

It is easy to verify that

°,,9
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31 1 3 1 1)
'!*!' :- I [bif(O,3 1 - bif(O , - .11 + [b~fi£(, - bif( , -

4 3

-. [bzf(~I~) - bzfeiq,-J Ibif(iDi) - b~f7i j.

+ [bf(,0)- b0(0,0)] - [hifl 1 4 )- bi

ME+ [b (i) - b , - [b(I) - 12 (bb

if f 4 4 If 4 4~(j~)

Lot T be the triangle with vertices U (0,0). V - (0,1) and

W (1,1). Then

(x1,x2 ) -u(0,0) + v(0,1) + w(1,1) with u+v+w = I

It follows that

u - 1-x2  , v x2-xl and w Ix

Hence
kW'4 -k i+k

xi (iU + iv + kM)/4 4""-"- Xtk 4 4'

and

Ijk i tIlki (1-x2 1 xI(x 2-x)

Thus

Ifll - ! b ' ) #
T p -0 if 404 4-q,q-p,p

By Lema 5 we have

I(f(.-e2))I = - b ) *4
2.1 p-0 q-0 If 4' 4 "-qq-pop

Therefore,

(b (P-) -b (e -1)1 - I(f - f(-e ))I
pt O IqO 44 if 4'4 #4-q,q-pp 2

.. :..On the other hand

2 3 2 3 2 2
(f - f(*-e 2 ))(XlX 2) - x x2 - Xl( -1) X(3X - 3x2 + 1)

4 3 2 12 3 2 2

... + 2x3(X 2-x1 ) + x(X 2 -x 1  - x3(-x 2 ) - X2(x 2 -x1 )(1-x 2 ) + x 2l-x 2

1,, 2 013 1 602 - 1 2 1 2

,00,4 40,1,3 +  "0.2,2 i 1,0,3 - 1 1,1,2 6 2,0,2
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:'oF
This yields the following result:

% bif (0,) - bif(O,- 1 ) 0

b - 0,- : if( 4 4 if( 4 4

,'_-, bz (all) -bz (a,- .) =.-

Now we consider another triangle T2 with vertices U - (0,0),

V (1,0) and W - (1,1). Then

u - I - xl, v - x -x 2  and w - x2

4 (1 +k)
A i

:4xijk. 4, .4

*ijk - (1-x 1 )x 1  x2 l xk

Moreover, we have

f(x 1 1 x2 ) -f(x-1,x 2 ) -(2xl-1)x:- -(1-xl )x3 + (xl-x 2 )x3 + x4

2 1 1

S- 4 #1,0,3 4 0,1,3 + 0,0,4

It follows that

b if (1,0) - bf (0,0) , 0

if 4 if 4
b b
if 1 '1 1) bif(O 1 - 0

31 11
bif (  ) - b f (.4) if 0

32 12

... b:f(4 ,4 ) - bz f(- jj) - 0

In conclusion we obtain

4( O , O ) I f m 1 ( 1 5 )

-20-
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Thus

1 5 2 1 3 1
f IhN ; -h for h < •(16

6 124

Furthermore, we have, for any g e C(R2),

N-1 N-1 4 3"hg x [ a..
h m0 n i=1 J= X j I1/hg

N-I 1 1 2 1 3 1
I (bI (m,- -)-bi1 (m+ )+b (m+4-,-4 4)-bIQ (m+4' 4m-0 1/h g  lalg /hg 1a/hg

N-1 1 1 1+2 1+3
- I [bI (mN- )-bI/ (m+ -1,N- !)+b ( + hg ,N- -1)-b (m/hg 1,N-

M-0 I01/hg I 1,hg 4I4a0 1/hg 4 I 1,,g~ 4 j)4

1 11
+ (-b (O,)+b (On+ -- b ,n+ 1) +b1 2

n-0[ [- 0I /hg(Icrl/h 
O q 1/hl-b- 4 I/h1/h

(17)
N-i 1 1 1 1 2

S- 0 [-b lo/hg(N,n)+b I0/hg(N,n+ -Z)-bI l/hg(N- 4Z,n+ 4)+bia1/hg(N- 4,n 1

It is easily seen that

lb I0 i/hg( const g

where the const is independent of h. Hence (17) implies that

1
1I hgI 4 4N const g C r const - g

This shows that

Ph Ohl•11

Now (14), (16) and (18) yield the desired result:

dist(f,S h ) > const h
4

2 3
for some positive constant and the function f x t-+ x2x 2
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